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Free energy of a layered superconductor with ���d is calculated in a parallel magnetic field by means of
the Gor’kov equations, where �� is a coherence length perpendicular to the layers and d is an interlayer
distance. The free energy is shown to differ from that in the textbook Lawrence-Doniach model at high fields,
where the Meissner currents are found to create an unexpected positive magnetic moment due to shrinking of
the Cooper pair “sizes” by a magnetic field. This paramagnetic intrinsic Meissner effect in a bulk is suggested
to detect, by measuring in-plane torque, the upper critical field and magnetization in layered organic and
high-Tc superconductors, as well as in superconducting superlattices.
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The Meissner diamagnetic effect is known to be the most
important property of a superconducting phase and is respon-
sible for destruction of superconductivity both in type-I and
type-II superconductors.1 Meanwhile, as shown by us in
Refs. 2–4 and as shown independently by Tesanovic et al.,5

quantum effects of an electron motion in a magnetic field
result in the appearance of a qualitatively different
phenomenon—superconductivity surviving in high magnetic
fields in layered2–4 and isotropic three-dimensional �3D�
�Ref. 5� type-II superconductors. In particular, it was
shown2–4,6 that in a layered conductor in a parallel magnetic
field, where the Landau level quantization is impossible,
some other quantum effects—the Bragg reflections—play an
important role. These quantum effects result in a “two di-
mensionalization” �i.e., 3 D→2 D crossover� of an open
electron spectrum in an arbitrary weak parallel magnetic
field. This is known6,7 to cause the field-induced spin-
density-wave �FISDW� and field-induced charge-density-
wave �FICDW� instabilities in layered quasi-one-
dimensional �Q1D� conductors. More complicated 3 D
→1 D→2 D crossovers are shown8,9 to be responsible for
the experimentally observed nontrivial angular magnetic os-
cillations in a metallic phase of different layered organic con-
ductors, including Lee-Naughton-Lebed8 and Lebed magic
angle9 oscillations.

As shown in Refs. 2–4 and 7, the similar 3 D→2 D
crossovers have to be responsible for a stabilization of a
superconducting phase in layered Q1D �Refs. 2 and 4� and
quasi-two-dimensional �Q2D� �Ref. 3� conductors since two-
dimensional �2D� superconductivity is not destroyed in a par-
allel magnetic field. More precisely, it is shown2–4 that �i� the
quantum effects make the upper critical field to be divergent,
Hc2

� �T�→� as T→0, and �ii� there is some critical field, H�,
above which superconducting temperature grows in an in-
creasing magnetic field. Such superconducting phase with
dTc /dH�0 is called the re-entrant superconductivity
�RS�.2–5 The original predictions2–4 have been theoretically
confirmed by a number of studies,10–16 including Refs. 15
and 16, where paramagnetic Meissner effect was suggested
for triplet Q1D superconductors. Despite the great success of
3 D→1 D→2 D and 3 D→2 D crossover concepts in
the explanations of magnetic properties in metallic,7–9 the
FISDW,6,7 and the FICDW �Ref. 7� phases of organic con-
ductors, so far there has been no evidence that superconduct-
ing temperature can grow in high magnetic fields due to the

quantum 3 D→2 D crossovers.2–5,10–14 A possibility of the
RS phase to exist was experimentally studied in Q1D layered
organic superconductors �TMTSF�2X �X=PF6 and X=ClO4�
by Lee et al.17,18 and Jerome.19 Their experiments gave hints
on a possibility for superconductivity to significantly exceed
the quasiclassical upper critical field Hc2

� �0�—the effect
predicted in Refs. 2–5 and 10–16. However, they were not
able to confirm the appearance of the RS phase with
dTc /dH�0. Analogous experiments performed on a Q2D
superconductor Sr2RuO4 �Ref. 20� did not detect any stabili-
zation of superconductivity at H�Hc2

� �0�.
The main obvious difficulty in the above-mentioned ef-

forts to discover the RS phase is the Pauli spin-splitting de-
structive mechanism against superconductivity and the re-
lated Clogston paramagnetic limiting field, Hp.1 It is absent
only for some triplet superconducting phases, which are be-
lieved to exist in �TMTSF�2X �Refs. 4, 15, and 16� and
Sr2RuO4 �Ref. 21� superconductors. On the other hand, re-
cently there have appeared the NMR measurements22 in fa-
vor of a singlet nature of superconductivity in
�TMTSF�2ClO4 material, as well as some doubts23 in a triplet
nature of superconductivity in Sr2RuO4 one.

The goal of our Brief Report is a threefold one: First, we
show that although in Q2D paramagnetically limited �sin-
glet� superconductors the RS phase may not be characterized
by dTc /dH�0 feature,3 nevertheless the RS phase reveals
itself as another unique phenomenon—paramagnetic intrin-
sic Meissner effect �PIME�. Second, we extend the micro-
scopical theory3 to describe the most important from an ex-
perimental point of view of d- and s-wave Q2D
superconductors with ���d, where �� is a coherence length
perpendicular to the conducting layers and d is an interlayer
distance. Third, we suggest simple experimental methods to
detect the PIME phenomenon in Q2D organic and high-Tc
superconductors by using the in-plane torque, the upper criti-
cal field, and the magnetization measurements. In particular,
we demonstrate that in-plane anisotropy due to anisotropic
Ginzburg-Landau coherence lengths, which disappears in an
intermediate region of magnetic fields �where the Lawrence-
Doniach model is applicable�, appears again in high mag-
netic fields as a consequence of the PIME phenomenon �see
Figs. 1 and 2�. We suggest to measure the in-plane aniso-
tropy of the upper critical field and magnetization, as well as
in-plane torque in high magnetic fields to discover the PIME
and RS phenomena. For these purposes, we derive a free
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energy of a Q2D superconductor with ���d in a parallel
magnetic field from the Gor’kov formulation24–26 of the mi-
croscopic superconductivity theory. Our results coincide with
that of the Lawrence-Doniach model27,28 only at low
enough magnetic fields, H�H�, where the Meissner effect is
diamagnetic. We show that at high magnetic fields,
H�H��Hp, the field starts to shrink the Cooper pair sizes
perpendicular to conducting layer directions due to 3 D
→2 D crossovers in a parallel magnetic field. The above-
mentioned 3 D→2 D crossovers of the Cooper pairs are
not taken into account in the Lawrence-Doniach model and,
as shown below, are responsible for the unique PIME phe-
nomenon.

Let us consider a layered superconductor with a Q2D
electron spectrum,

��p� = ���px,py� + 2t� cos�pzd�, t� � �F, �1�

in a parallel magnetic field,

H = �0,H,0�, A = �0,0,− Hx� , �2�

where ���px , py���F is an in-plane electron energy, t� is an
overlapping integral of electron wave functions perpendicu-
lar to the conducting plane directions, and �F is the Fermi
energy. Electron spectrum �Eq. �1�� can be linearized near the
2D Fermi surface �FS�, ���px , py�=�F, in the following way:

��p� − �F = vx�py��px − px�py�� + 2t� cos�pzd� , �3�

where vx�py�=����px , py� /�px is a velocity component and
px�py� is the Fermi momentum along the x axis.

In the gauge �Eq. �2��, electron Hamiltonian in a magnetic
field can be obtained from Eq. �3� by means of the Peierls
substitution method, px→−i�d /dx� and pz→pz+ �e /c�Hx.6

Therefore, electron Green’s functions in a magnetic field sat-
isfy the following differential equation:

�i�n − vx�py��− i
d

dx
− px�py�	 + 2t� cos
pzd +

eHdx

c
�

+ 2	BHs�Gi�n
�x,x1;py,pz;s� = 
�x − x1� , �4�

where �n is the Matsubara frequency,24 	B is the Bohr mag-
neton, and s= �

1
2 is an electron-spin projection along the

quantization y axis—�
1. It is important that Eq. �4� can be
solved analytically. As a result, we obtain

Gi�n
�x,x1;py,pz;s� = − i

sgn �n

vx�py�
exp�−

�n�x − x1�
vx�py�

	exp�ipx�py�


�x − x1��exp�2i	BsH�x − x1�
vx�py�

	

exp� i��py�

2
�sin
pzd +

eHdx

c
�

− sin
pzd +
eHdx1

c
�	� , �5�

where ��py�=4t�c /evx�py�Hd.
Linearized gap equation determining superconducting

transition temperature, Tc�H�, can be derived using Gor’kov
equations for nonuniform superconductivity.3,25,26 As a re-
sult, we obtain

��x� = V� dl

v��l���x−x1���vx�l��/�

�

dx1
2�T

vx�l�sinh�2�T�x − x1�
vx�l�

	

cos�2	BH�x − x1�

vx�l�
	

J0�2��l�sin� eHd�x − x1�
2c

	sin� eHd�x + x1�
2c

	���x1� ,

�6�
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FIG. 1. Superconducting transition temperature in a parallel
magnetic field for a paramagnetically limited Q2D superconductor
is sketched. GL—area of applicability of the Ginzburg-Landau
theory �Ref. 1�. LD—area of applicability of the Lawrence-Doniach
model �Refs. 27 and 28�. PIME—area, where both the GL and LD
descriptions are broken. In the latter case, which corresponds to the
shrinking of the Cooper pair sizes by a magnetic field, our Eqs.
�6�–�14� are still valid and the RS phase appears. The RS phase may
reveal itself as an increase in the transition temperature in a mag-
netic field if the orbital effects of an electron motion are stronger
than the Pauli spin-splitting effects �dashed line�. The RS phase
always reveals itself as a PIME, which results in unexpected in-
plane anisotropy of the upper critical field and magnetization even
in the case where the Pauli spin-splitting effects are strong, and
thus, the area with dTc /dH�0 is absent �solid line�. We suggest to
measure the in-plane torque, the upper critical field, and the mag-
netization to discover the RS phase.
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FIG. 2. Solid line: in-plane magnetization, 4�M, is sketched as
a function of a magnetic field in the absence of the Pauli spin-
splitting effects, where at high magnetic fields, H�H�, the RS
phase reveals itself as a PIME. Dashed line: an absolute value of
in-plane torque, ���, is sketched. It is important that the torque is
independent of the Pauli spin-splitting effects since they are sup-
posed to be isotropic. Therefore, even in the case where the destruc-
tive Pauli spin-splitting effects eliminate a positive sign of the
Meissner effect in high magnetic fields, the PIME phenomenon and
the RS phase can still be detected by the in-plane torque
measurements.
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where integration in Eq. �6� is made along the 2D contour,
���px , py�=�F, v��l� is a velocity component perpendicular to
the 2D FS, V is an effective electron-electron interaction
constant, and � is a cut-off energy. �Note that although Eq.
�6� is derived for singlet s-wave superconductors, it is also
valid for d-wave superconductors29 if we redefine properly
anisotropic coherence lengths and the effective interaction
constant V.�

We point out that Eq. �6� is the most general one among
the existing equations to determine the parallel upper critical
field in a layered superconductor. In particular, it takes into
account the Bragg reflections and related 3 D→2 D cross-
overs of electrons, which move in the extended Brillouin
zone in a parallel magnetic field. As shown in Ref. 7, the
above-mentioned quantum effects result in a momentum
quantization law for an electron momentum component
along the x axis. This is the reason why the kernel of the
integral Eq. �6� is periodic2,3 with respect to variables x and
x1. In the case where the destructive Pauli spin-splitting ef-
fects against superconductivity are absent �i.e., at 	B=0 in
Eq. �6��, Eq. �6� possesses a periodic solution for ��x� at any
magnetic field. In this case, superconductivity is stable in an
arbitrary strong magnetic field and exists at high fields in the
form of the RS phase with dTc /dH�0. In the case of a
singlet superconductivity, which is considered in the Brief
Report, the Pauli spin-splitting effects may eliminate the su-
perconductivity with dTc /dH�0. Nevertheless, in the latter
case, the RS phase reveals itself as an unusual anisotropy of
the upper critical field and magnetization in high magnetic
fields, H�H���t� /Tc�1/2�0 /�xd�Hp �see Figs. 1 and 2�.

As the most general equation, Eq. �6� contains the
Ginzburg-Landau and Lawrence-Doniach descriptions as its
limiting cases at low enough magnetic fields, H�H�. For the
so-called Josephson coupled layered superconductors with
���d,27,28 Eq. �6� may be simplified and rewritten in the
following differential form:

�Tc − T

Tc
− 2.1
	BH

�Tc
�2

+ �x
2 d2

dx2 − A�H�

+ B�H�cos
2x�c

vF
�	��x� = 0, �7�

with

A�H� =
8t�

2

�c
2 �� vF

vx�l�
	2�

0

� dz

sinh�z�
sin2� �c

4�Tc

vx�l�
vF

z	� ,

�8�

and

B�H� =
8t�

2

�c
2 �� vF

vx�l�
	2�

0

� dz

sinh�z�
sin2� �c

4�Tc

vx�l�
vF

z	

cos� �c

4�Tc

vx�l�
vF

z	� , �9�

where

�. . .� =� dl

v��l�
�. . .��� dl

v��l�
. �10�

�Here, �c=eHvFd /c is a characteristic frequency of an elec-
tron motion along open FS �Eq. �1� and Ref. 3� and �x

=�7��3��vx
2�l��1/2 /4�Tc is an in-plane anisotropic Ginzburg-

Landau coherence length, 	BH��c�H���Tc.�
Note that Eqs. �7�–�10� extend the Lawrence-Doniach

model27,28 to the case of strong magnetic fields and can be
called the extended Lawrence-Doniach equations. In contrast
to the traditional Lawrence-Doniach equations, the coeffi-
cients A�H� and B�H� in Eqs. �7�–�10� depend on a magnetic
field, which means that the probability for the Cooper pair to
jump from one conducting layer to another depends on the
field. This important feature of Eqs. �7�–�10� is a conse-
quence of the shrinking of the Cooper pair sizes due to
3 D→2 D crossover in a parallel magnetic field.2,3,7

Below, we are interested in the descriptions of the RS and
PIME phenomena, therefore, we consider Eqs. �7�–�10� at
high magnetic fields. It is possible to show that at H�H� the
solution of Eq. �7� can be represented as ��x�=�=const,
which corresponds to the RS phase.2,3 In this case, the cor-
responding second-order term of a free energy with respect
to the order parameter � can be written in the following
simple form:

F2�T,H� = − N��F��Tc�H� − T

Tc
	�2, �11�

with

Tc�H� = Tc − 2.1
�	BH�2

�2Tc
− 2.1

t�
2

�2Tc
+ 0.95

t�
2

�2Tc

 eHd

c
�2

�x
2,

�12�

where N��F� is a density of states per one electron-spin pro-
jection at �=�F.

Note that the first term in Eq. �12� describes the destruc-
tion of a singlet superconductivity by the Pauli spin-splitting
effects, whereas the last term in Eq. �12� is responsible for
the restoration of superconductivity at high magnetic fields
and for the appearance of the RS phase and the PIME phe-
nomenon. If we take into account that the fourth-order term
of a free energy with respect to the order parameter � can be
calculated at H�H� in a standard manner25 F4

=7��3�N��F��4 /16�2Tc
2, then we can minimize the total free

energy and find that


F�T,H� = −
4�2

7��3�
N��F��Tc�H� − T�2. �13�

Magnetization can be found by a differentiation of the
free energy with respect to the magnetic field,

M�T,H� =
8

7��3�
N��F�
Tc − T

Tc
��− 4.2	B

2 + 1.9
 et�d�x

c
�2	H

+ M0, �14�

where M0 is a magnetization in a metallic phase. Equations
�12�–�14�, which are valid at H��H�Hp, are the main re-
sults of the Brief Report. Note that in Eq. �14�, the first term
corresponds to a destruction of superconductivity due to the

BRIEF REPORTS PHYSICAL REVIEW B 78, 012506 �2008�

012506-3



Pauli spin-splitting effects, whereas the second term repre-
sents unusual paramagnetic orbital contribution to a mag-
netic moment �i.e., the PIME phenomenon�. It is important
that �x in Eqs. �12�–�14� is anisotropic and depends on a
direction of a magnetic field since it is an in-plane compo-
nent of a coherence length perpendicular to the field. There-
fore, the RS and PIME effects in Eqs. �12�–�14� can be de-
tected by measuring a torque, provided that spin-splitting
effects are isotropic.

In conclusion, we discuss possible experiments to dis-
cover the PIME and RS phenomena. The most direct method
is to create such layered superconducting superlattice, where
�c�H��	BH.30 The latter condition means that the orbital
effects are more important than the Pauli spin-splitting ones.
Therefore, in the above-mentioned case, the increase in tran-
sition temperature �Eq. �12�� and the paramagnetic Meissner
effect �Eq. �14�� can be directly observed. Nevertheless, in

most real physical compounds with ���d and �c�H�
�	BH, the PIME �Eq. �14�� and RS �Eq. �12�� phenomena
can only be observed indirectly—by measurements of
anisotropies of the in-plane upper critical field �Eq. �12�� and
magnetization �Eq. �14��, as well as by measurements of in-
plane torque. In our opinion, the most perspective supercon-
ductors for indirect observations of the PIME phenomenon
in steady magnetic fields are organic compounds
�-�ET�2NH4Hg�SCN�4, �-�ET�2Cu�NCS�2,
�-�ET�2Cu�N�CN�2�X, �-�ET�2KHg�SCN�4, and
�-�BETS�2FeCl4.31 The above-mentioned studies of the in-
plane anisotropies can also be performed in high-temperature
superconductor Y1Ba2C3O7, but it will require ultrahigh
pulsed magnetic fields.
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